skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Richardson, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We revisit previous hybrid simulations of the heating and acceleration of interstellar pickup ions (PUIs) at the solar wind termination shock. In previous simulations, a relatively cold initial distribution of PUIs was assumed; and while the resulting shock-heated distribution was consistent with Voyager 2 LECP measurements at about 30 keV, the intensity of the distribution downstream of the shock in the ~1–10 keV energy range was lower than predictions based on analysis of energetic neutral atoms (ENAs) from the Interstellar Boundary Explorer-Hi and Cassini's Ion and Neutral Camera. Here we perform new simulations with more realistic initial PUI distributions. We assume the distribution is a partially filled spherical shell in velocity space with a radius that varies from 320 to 640 km s−1. We then use the distributions downstream of the shock from these new simulations to estimate the ENA flux spectrum and compare with observations. We find that the predicted ENA spectrum from the new simulations much better matches the observations over a broad range of energies. We conclude that the hybrid simulations provide reasonable predictions for the distribution of charged particles in the energy range from ~0.5 to 50 keV. 
    more » « less
    Free, publicly-accessible full text available February 3, 2026
  2. National rates of gun violence have risen during the COVID-19 pandemic. There are many contributing factors to this increase, including the compounding consequences of social isolation, unstable housing, decreased economic stability, and ineffective and violent policing of communities of color. The effects of these factors are exacerbated by the pandemic's impact on the provision and availability of psychosocial services for individuals in marginalized communities, particularly those who have been violently injured. Hospital-based violence intervention programs (HVIPs) have been identified as a crucial intervention strategy in reducing repeat violent injury. The ongoing COVID-19 pandemic has engendered, significant barriers in HVIPs' attempts to assist program participants in achieving their health-related and social goals. This research offers insight into the complexities of providing social services during the convergence of two public health crises—COVID-19 and gun violence—at the HVIPs associated with the two busiest trauma centers in the state of Maryland. In considering the effects of inadequate financial support and resources, issues with staffing, and the shift to virtual programming due to restrictions on in-person care, we suggest possible changes to violence prevention programming to increase the quality of care provided to participants in a manner reflective of their unique structural positions. 
    more » « less
  3. Abstract Our understanding of the interaction of the large-scale heliosphere with the local interstellar medium (LISM) has undergone a profound change since the very earliest analyses of the problem. In part, the revisions have been a consequence of ever-improving and widening observational results, especially those that identified the entrance of interstellar material and gas into the heliosphere. Accompanying these observations was the identification of the basic underlying physics of how neutral interstellar gas and interstellar charged particles of different energies, up to and including interstellar dust grains, interacted with the temporal flows and electromagnetic fields of the heliosphere. The incorporation of these various basic effects into global models of the interaction, whether focused on neutral interstellar gas and pickup ions, energetic particles such as anomalous and galactic cosmic rays, or magnetic fields and large-scale flows, has profoundly changed our view of how the heliosphere and LISM interact. This article presents a brief history of the conceptual and observation evolution of our understanding of the interaction of the heliosphere with the local interstellar medium, up until approximately 1996. 
    more » « less
  4. Abstract Large-scale disturbances generated by the Sun’s dynamics first propagate through the heliosphere, influence the heliosphere’s outer boundaries, and then traverse and modify the very local interstellar medium (VLISM). The existence of shocks in the VLISM was initially suggested by Voyager observations of the 2-3 kHz radio emissions in the heliosphere. A couple of decades later, both Voyagers crossed the definitive edge of our heliosphere and became the first ever spacecraft to sample interstellar space. Since Voyager 1’s entrance into the VLISM, it sampled electron plasma oscillation events that indirectly measure the medium’s density, increasing as it moves further away from the heliopause. Some of the observed electron oscillation events in the VLISM were associated with the local heliospheric shock waves. The observed VLISM shocks were very different than heliospheric shocks. They were very weak and broad, and the usual dissipation via wave-particle interactions could not explain their structure. Estimates of the dissipation associated with the collisionality show that collisions can determine the VLISM shock structure. According to theory and models, the existence of a bow shock or wave in front of our heliosphere is still an open question as there are no direct observations yet. This paper reviews the outstanding observations recently made by the Voyager 1 and 2 spacecraft, and our current understanding of the properties of shocks/waves in the VLISM. We present some of the most exciting open questions related to the VLISM and shock waves that should be addressed in the future. 
    more » « less
  5. Abstract Progress in gravitational-wave (GW) astronomy depends upon having sensitive detectors with good data quality. Since the end of the Laser Interferometer Gravitational-Wave Observatory-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of GW candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study GWs. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs. 
    more » « less
    Free, publicly-accessible full text available April 16, 2026
  6. Palmer SSSA 2019 
    more » « less
  7. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot be simultaneously measured with arbitrary precision, giving rise to an apparent limitation known as the standard quantum limit (SQL). Gravitational-wave detectors use photons to continuously measure the positions of freely falling mirrors and so are affected by the SQL. We investigated the performance of the Laser Interferometer Gravitational-Wave Observatory (LIGO) after the experimental realization of frequency-dependent squeezing designed to surpass the SQL. For the LIGO Livingston detector, we found that the upgrade reduces quantum noise below the SQL by a maximum of three decibels between 35 and 75 hertz while achieving a broadband sensitivity improvement, increasing the overall detector sensitivity during astrophysical observations. 
    more » « less